
A Comprehensive Study on Large-Scale Graph Training:

Benchmarking and Rethinking

NeurIPS 2022 Dataset and Benchmark Track

Keyu Duan 1, Zirui Liu 2, Peihang Wang 3, Wenqing Zheng 3, Kaixiong Zhou 2, Tianlong Chen
3, Xia Hu 2, Zhangyang Wang 3

1National Univeristy of Singapore, 2Rice Univerisity, 3University of Texas at Austin

Intro

The Bottleneck of Scaling Up GNNs

A fact: training a GNN-based recommendation system over 7.4 billion items requires

three days on a 16-GPU cluster (384 GB memory in total) [9]

Recap A k-layer message passing (MP) of Vanilla GCNs:

X(K) = A(K�1)�

✓
A(K�2)�

�
· · ·�(A(0)X(0)W(0)) · · ·

�
W(K�2)

◆
W(K�1),

Bottleneck
For the memory usage, the entire sparse adjacency matrix is supposed to be stored in

one GPU. As the number of nodes grows, it is not a↵ordable.

4

Formulations for Large-Scale Graph

Training Paradigms

Taxonomy of Scalable GNNs

Research Question
Since the entire sparse adjacency matrix can not be stored into one GPU, how could

we do the training utilizing the graph structure?

Sampling-based Methods

Approximate batch training with sampled graphs

X(k)
B0

= eA(k�1)
B1

�

✓
eA(k�2)
B2

�
�
· · ·�(eA(0)

BK
X(0)

BK
W(0)) · · ·

�
W(K�2)

◆
W(K�1),

Category:

• Node-wise Sampling: Bl+1 =
S

v2Bl
{u | u ⇠ Q · PN (v)}

• Layer-wise Sampling: Bl+1 = {u | u ⇠ Q · PN (Bl)}

• Subgraph-wise Sampling: BK = BK�1 = · · · = B0 = {u | u ⇠ Q · PG}

5

Taxonomy of Scalable GNNs

Decoupling-based Methods

Move all message passing (AX operation) to CPU

• Precomputing-based:

Xl = AlX| {z }
precomputing

, X̄ = ⇢(X,X1, · · · ,XK), Y = f✓(X̄)| {z }
end-to-end training on a GPU

,

• Postprocessing-based: Label Propagation

Y(l) = ↵AY(l�1) + (1� ↵)G.

6

Benchmarking Scalable GNNs

Benchmarking over E↵ectiveness: Greedy Hyperparameter Search

Table 1: The search space of hyperparameters for benchmarked methods.

Category Hyperparameter (Abbr.) Candidates

Sampling &
Precomputing

Learning rate (LR) {1e � 2⇤, 1e � 3, 1e � 4}

Weight Decay (WD) {1e � 4⇤, 2e � 4, 4e � 4}

Dropout Rate (DP) {0.1, 0.2⇤, 0.5, 0.7}

Training Epochs (#E) {20, 30, 40, 50⇤}

Hidden Dimension (HD) 128⇤, 256, 512

layers (#L) {2⇤, 4, 6}

Batch sizea (BS) {1000⇤, 2000, 5000}

LP

Di↵usion Type (DT) { residual⇤, zeros }

Propagations (#Prop) { 2, 20⇤, 50 }

Aggregation Ratio (AR) { 0.5, 0.75⇤, 0.9, 0.99 }

Adj. Norm (Adj.) { D�1A, AD�1, D�1/2AD�1/2⇤
}

Auto Scale (AS) { True⇤, False }

MLP Layers (#ML) { 2⇤, 3, 4 }

⇤ marks the default value
a we do not search batch size for precomputing based methods since
they do not follow a sample-training style.

7

Benchmarking over E↵ectiveness: Experiment Results

Sampling-based Decoupling-based

Figure 1: The greedy hyperparameter searching results for selected representative methods.

The x-axis denotes the searched HPs, where the abbreviations are consistent with Table 1.

8

Benchmarking over E↵ectiveness: Empirical Observations

• Sampling-based methods are more sensitive to the hyperparameters

related to MP such as batch size, num of layers.

• Sampling-based methods’ performance is nearly positive-correlated with

the training batch size. Particularly, in our experiment, we set the number of

sampled neighbors of node-wise sampling to a large threshold such that the

performance of GraphSAGE can be regarded as full-batch training ’s.

• Precomputing-based methods generally perform better on larger datasets.

Remarkably, our searched results for GraphSAGE and LP on ogbn-products also

reached better performance, compared with the ones on the OGB leaderboard 1.

1https://ogb.stanford.edu/docs/leader_nodeprop/

9

https://ogb.stanford.edu/docs/leader_nodeprop/

Benchmarking over E↵eciency: Complexity Analysis

Table 2: The time and space complexity for training GNNs with sampling-based and

decoupling-based methods, where b is the averaged number of nodes in the sampled subgraph

and r is the averaged number of neighbors of each node. Here we do not consider the

complexity of pre-processing sice it can be done in CPUs.

Category Time Complexity Space Complexity

Node-wise Sampling [4] O(rLND2) O(brLD)

Layer-wise Sampling [3, 13] O(rLND2) O(brLD)

Subgraph-wise Sampling [2, 10] O(L||A||0D + LND2) O(bLD)

Precomputing [8, 3, 6] O(LND2) O(bLD)

10

Benchmarking over E↵eciency: Experiment Results

Table 3: The memory usage of activations and the hardware throughput (higher is better).

The hardware here is an RTX 3090 GPU.

Flickr Reddit ogbn-products

Act

Mem. (MB)

Throughput

(iteration/s)

Act

Mem. (MB)

Throughput

(iteration/s)

Act

Mem. (MB)

Throughput

(iteration/s)

GraphSAGE 230.63 65.96 687.21 27.62 415.94 37.69

ClusterGCN 18.45 171.46 20.84 79.91 10.62 156.01

GraphSAINT 16.51 151.77 21.25 70.68 10.95 143.51

FastGCN 19.77 226.93 22.53 87.94 11.54 93.05

LADIES 33.26 195.34 43.21 116.46 20.33 93.47

SGC 0.01 115.02 0.02 89.91 0.01 267.31

SIGN 16.99 96.20 16.38 75.33 16.21 208.52

SAGN 72.94 55.28 72.37 43.45 71.81 80.04

11

Benchmarking over E�ciency: Convergence Analysis

Figure 2: The empirical results of convergence for sampling-based methods (real line) and

precomputing-based methods (dash line).

12

EnGCN: Ensembling Graph

Convolutional Networks

Starting Point: Cons of Precomputing-based GNNs

• In general, precomputing-based methods at least occupy a CPU memory space of

O(LNd), where L is the number of layers; N is the number of nodes; and d is the

dimension of input features.

• In comparison, it is L times as large as the others, which is not a↵ordable for

extremely large-scale graphs.

A Fact: containing about 111 million nodes, the largest ogb dataset,

ogbn-papers100M, requires approximately 57 Gigabytes (GB) to store the initial

feature matrix, given the data type is float and the dimension of features is 128. As

the number of layers increases, the required CPU memory space will grow

proportionally to an una↵ordable number.

13

EnGCN: Ensembling Graph Neural Networks

Recap: The message passing of k layers with a general form

X(k) = �(k�1)

✓
A�(k�2)

�
· · ·A�(0)(AX(0))

�◆
,

regarding those feature transformation unit � as weak models, we propose a layer-wise

training manner:

X(l) = AX(l�1)
| {z }

∂ Message passing on CPUs

, Z(l) = �(l)(X(l))| {z }
∑ forword propagation

, r�(l) = rL(Z(l),Y)| {z }
∏ backward propagtion

.

for l from 1 to k

• �(l) = deepcopy(�(l�1))

• do ∂; do ∑ ∏ til convergence.

• save model �(l)

Organically integrating SLE [6], EnGCN achives new SOTA performance on several

benchmark datasets.

14

Empirical Analysis

Table 4: The comparison experiment results on Flickr, Reddit, and ogbn-products

Category Baselines Flickr Reddit ogbn-products

Sampling-based

GraphSAGE [4] 53.63 ± 0.13% 96.50 ± 0.03% 80.61 ± 0.16%

FastGCN [1] 50.51 ± 0.13% 79.50 ± 1.22% 73.46 ± 0.20%

LADIES [13] 50.51 ± 0.13% 86.96 ± 0.37% 75.31 ± 0.56%

ClusterGCN [2] 51.20 ± 0.13% 95.68 ± 0.03% 78.62 ± 0.61%

GraphSAINT [10] 51.81 ± 0.17% 95.62 ± 0.05% 75.36 ± 0.34%

Decoupling-based

SGC [8] 50.35 ± 0.05% 93.51 ± 0.04% 67.48 ± 0.11%

SIGN [3] 51.60 ± 0.11% 95.95 ± 0.02% 76.85 ± 0.56%

SAGN [6] 50.07 ± 0.11% 96.48 ± 0.03% 81.21 ± 0.07%

GAMLP [12] 52.58 ± 0.12% 96.73 ± 0.03% 83,76 ± 0.19%

C&S [5] 51.24 ± 0.17% 95.33 ± 0.08% 85.11 ± 0.07%

Other SOTA Methods

AdaGCN [7] 52.97 ± 0.01% 96.05 ± 0.00% 76.41 ± 0.00%

SAGN+SLE [6]⇤ 54.60 ± 0.40% 97.10 ± 0.00% 84.28 ± 0.14%
GIANT-XRT+
SAGN+MCR+C&S [11]⇤ - - 86.73 ± 0.08%

Ours EnGCN 56.43 ± 0.21% 97.14 ± 0.03% 87.99 ± 0.04%

⇤: the results are from the original papers
15

Convergence Analysis

Figure 3: The convergence landscape of EnGCN. All models are trained with 4 layers’

features. For each layer-wise phase, we train the model with 70 epochs.

16

CPU Memory Usage Comparison

Figure 4: The allocated CPU memory of EnGCN and selected baselines on Flickr.

17

Questions?2

2Contact k.duan@u.nus.edu; {zl105,Kaixiong.Zhou,xia.hu}@rice.edu;
{peihaowang,w.zheng,tianlong.chen,atlaswang}@utexas.edu

17

References i

J. Chen, T. Ma, and C. Xiao.

Fastgcn: fast learning with graph convolutional networks via importance

sampling.

arXiv preprint arXiv:1801.10247, 2018.

W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C.-J. Hsieh.

Cluster-gcn: An e�cient algorithm for training deep and large graph

convolutional networks.

In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining, pages 257–266, 2019.

F. Frasca, E. Rossi, D. Eynard, B. Chamberlain, M. Bronstein, and F. Monti.

Sign: Scalable inception graph neural networks.

arXiv preprint arXiv:2004.11198, 2020.

References ii

W. Hamilton, Z. Ying, and J. Leskovec.

Inductive representation learning on large graphs.

In NeuIPS, pages 1024–1034, 2017.

Q. Huang, H. He, A. Singh, S.-N. Lim, and A. R. Benson.

Combining label propagation and simple models out-performs graph neural

networks.

arXiv preprint arXiv:2010.13993, 2020.

C. Sun and G. Wu.

Scalable and adaptive graph neural networks with self-label-enhanced

training.

arXiv preprint arXiv:2104.09376, 2021.

References iii

K. Sun, Z. Zhu, and Z. Lin.

Adagcn: Adaboosting graph convolutional networks into deep models.

arXiv preprint arXiv:1908.05081, 2019.

F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger.

Simplifying graph convolutional networks.

In International conference on machine learning, pages 6861–6871. PMLR, 2019.

R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec.

Graph convolutional neural networks for web-scale recommender systems.

In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining, pages 974–983, 2018.

H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna.

Graphsaint: Graph sampling based inductive learning method.

arXiv preprint arXiv:1907.04931, 2019.

References iv

C. Zhang, Y. He, Y. Cen, Z. Hou, and J. Tang.

Improving the training of graph neural networks with consistency

regularization.

arXiv preprint arXiv:2112.04319, 2021.

W. Zhang, Z. Yin, Z. Sheng, W. Ouyang, X. Li, Y. Tao, Z. Yang, and B. Cui.

Graph attention multi-layer perceptron.

arXiv preprint arXiv:2108.10097, 2021.

D. Zou, Z. Hu, Y. Wang, S. Jiang, Y. Sun, and Q. Gu.

Layer-dependent importance sampling for training deep and large graph

convolutional networks.

Advances in neural information processing systems, 32, 2019.

	Scale UP Graph Neural Networks
	Formulations for Large-Scale Graph Training Paradigms
	Sampling-based Scalable GNNs
	Decoupling-based Scalable GNNs

	Benchmarking Scalable GNNs
	Benchmarking over Effectiveness
	Benchmarking over Efficiency

	EnGCN: Ensembling Graph Convolutional Networks
	Appendix

