4 [E2] The Universit
RIELE NIV & Chandra Departmem of Electrical

School of .
Department of Computer Science and Computer Engineering
kel Schod o

Computing

BNUS
95

mvermy

A Comprehensive Study on Large-Scale Graph Training;:
Benchmarking and Rethinking

NeurlPS 2022 Dataset and Benchmark Track

Keyu Duan !, Zirui Liu 2, Peihang Wang 3, Wenging Zheng 3, Kaixiong Zhou 2, Tianlong Chen
3, Xia Hu 2, Zhangyang Wang 3

INational Univeristy of Singapore, 2Rice Univerisity, 3University of Texas at Austin .\4.\4

NEURAL

--.‘~. INFORMATION

'-}-k: PROCESSING
¢*SYSTEMS

Intro

The Bottleneck of Scaling Up GNNs

A fact: training a GNN-based recommendation system over 7.4 billion items requires
three days on a 16-GPU cluster (384 GB memory in total) [9]

Recap A k-layer message passing (MP) of Vanilla GCNs:

x(K) — A(Kl)g(sz)a(. - o (AOXOWO)) ..)W(Kz))le),

Bottleneck
For the memory usage, the entire sparse adjacency matrix is supposed to be stored in

one GPU. As the number of nodes grows, it is not affordable.

Formulations for Large-Scale Graph
Training Paradigms

Taxonomy of Scalable GNNs

Research Question
Since the entire sparse adjacency matrix can not be stored into one GPU, how could

we do the training utilizing the graph structure?
SAMPLING-BASED METHODS

Approximate batch training with sampled graphs

XL = Z\gl—lh,(/}gz—%a(. o (RADXOWO)...)W(K—z)>W(K—1),

Category:
o Node-wise Sampling: Bjy1 =, ep{u | u~ Q- Pry}
e Layer-wise Sampling: Bjy1 = {u | u~ Q- Pyp)}
e Subgraph-wise Sampling: Bx = Bx_1=---=Bo={u| u~ Q- -Pg}

Taxonomy of Scalable GNNs

DECOUPLING-BASED METHODS
Move all message passing (AX operation) to CPU

e Precomputing-based:

Xl:AIX,)_(:P(X7X17 7XK)7 Y:fg(X),

precomputing

end-to-end training on a GPU

e Postprocessing-based: Label Propagation

Y = aAYUY 4 (1 - a)G.

Benchmarking Scalable GNNs

Benchmarking over Effectiveness: Greedy Hyperparameter Search

Table 1: The search space of hyperparameters for benchmarked methods.

Category Hyperparameter (Abbr.) ‘ Candidates
Learning rate (LR) {le —2*,1e — 3,1e — 4}
Weight Decay (WD) {le — 4*,2e — 4,4e — 4}
D t Rate (DP 0.1,0.2%,0.5,0.7
Sampling & ropout Rate (DP) {04, ,0.5,0.7}

Training Epochs (#E)
Hidden Dimension (HD)
layers (#L)

Batch size? (BS)

Precomputing

{20,30,40,50*}
128*,256, 512
{2*,4,6}
{1000*, 2000, 5000}

Diffusion Type (DT)

Propagations (#Prop)
Aggregation Ratio (AR)
Adj. Norm (Adj.)

Auto Scale (AS)

MLP Layers (#ML)

LP

{ residual*, zeros }
{2, 20", 50}
{ 0.5, 0.75% 0.9, 0.99 }
{ DA, AD"}, D-1/2ADV/2* }
{ True*, False }
{253, 4}

*

marks the default value

2 we do not search batch size for precomputing based methods since

they do not follow a sample-training style.

Benchmarking over Effectiveness: Experiment Results

SAMPLING-BASED DECOUPLING-BASED

ClusterGCN
10771 5099|5081 50.98 [50.79150.77 5081

GraphSAGE
5173 5179

LADIES

48.63 48.85 49.75 49.16 4975 49.87 49.87 4844 4828 4855

4512 X

5168 48814923 49.23 49.16 49.66 [48.03 50.09 4844 7 4975

Flickr
Flickr
Flickr

5173 4642 49.04 49.54 49.26 4987 5051 4844 4750 49.63 49.90 4711

4844 5124

GraphSAGE

9619 96.17 | 95.67 9634 84.12/8 95.0194.68 95.53 95.54 95.62 7786 9628 9600 9631 96.09 9306 9377 93.62 9426

9618 9621 9598 9650 5 9512|9530 95.55 95.63 95.68 9608 96.15 9631 9579 9631 9362 9362 9362 9306

Reddit
Reddit
Reddit

9615 9620 96.16 96.40 9530 95.46 95.50 9499 9537 9625 9585 96.48 9306 9409 9530

9599 9621 96.28 96.41

GraphSAGE

7126 | 7702 7654 7741 7571 76.19 76.44 76.41 8118 8096 80.00 890 8430

8117 8106 81.19 8106 8292

8| 7699 7727 7701 7805

75.70 7549 78.67

7643 76.18 78 8114 8122 83.62 2

Products
Products
Products
Products

7624 7131 78.06
79.10

AR Adj

76.11

76.68 7
LR WD DP #E HD #L BS

WD DP #E HD #E HD

#Prop

Figure 1: The greedy hyperparameter searching results for selected representative methods.
The x-axis denotes the searched HPs, where the abbreviations are consistent with Table 1.

Benchmarking over Effectiveness: Empirical Observations

e Sampling-based methods are more sensitive to the hyperparameters
related to MP such as batch_size, num_of_layers.

e Sampling-based methods’ performance is nearly positive-correlated with
the training batch size. Particularly, in our experiment, we set the number of
sampled neighbors of node-wise sampling to a large threshold such that the
performance of GraphSAGE can be regarded as full-batch training's.

e Precomputing-based methods generally perform better on larger datasets.
Remarkably, our searched results for GraphSAGE and LP on ogbn-products also
reached better performance, compared with the ones on the OGB leaderboard ®.

"https://ogb.stanford.edu/docs/leader_nodeprop/

https://ogb.stanford.edu/docs/leader_nodeprop/

Benchmarking over Effeciency: Complexity Analysis

Table 2: The time and space complexity for training GNNs with sampling-based and
decoupling-based methods, where b is the averaged number of nodes in the sampled subgraph
and r is the averaged number of neighbors of each node. Here we do not consider the
complexity of pre-processing sice it can be done in CPUs.

Category ‘ Time Complexity Space Complexity
Node-wise Sampling [4] O(rtND?) O(brtD)
Layer-wise Sampling [3, 13] O(rLND?) O(brLD)
Subgraph-wise Sampling [2, 10] | O(L||A||oD + LND?) O(bLD)
Precomputing [8, 3, 6] O(LND?) O(bLD)

10

Benchmarking over Effeciency: Experiment Results

Table 3: The memory usage of activations and the hardware throughput (higher is better).
The hardware here is an RTX 3090 GPU.

Flickr Reddit ogbn-products

Act Throughput Act Throughput Act Throughput

Mem. (MB) (iteration/s) Mem. (MB) (iteration/s) Mem. (MB) (iteration/s)
GraphSAGE 230.63 65.96 687.21 27.62 415.94 37.69
ClusterGCN 18.45 171.46 20.84 79.91 10.62 156.01
GraphSAINT 16.51 151.77 21.25 70.68 10.95 143.51
FastGCN 19.77 226.93 22.53 87.94 11.54 93.05
LADIES 33.26 195.34 43.21 116.46 20.33 93.47
SGC 0.01 115.02 0.02 89.91 0.01 267.31
SIGN 16.99 96.20 16.38 75.33 16.21 208.52
SAGN 72.94 55.28 72.37 43.45 71.81 80.04

11

Benchmarking over Efficiency: Convergence Analysis

Flickr Reddit ogbn-products
18 =
\u
16
. 25
@ @ 20
ge g
- s
0
0
o8
os] N\
. N
13 7 o “ » » %
Epochs
0
%
m
i
53 5]
Q9 Q
NI & 0
= =
g Saw
N %
©

] 3 o E) 5 0

Epochs

] i I}) % o

Ep(;chs

model
GraphSAGE
FastGCN
LADIES
ClusterGCN
GraphSAINT
SGC

SIGN

SAGN
GAMLP
category
sampling
precomputing

Figure 2: The empirical results of convergence for sampling-based methods (real line) and
precomputing-based methods (dash line).

EnGCN: Ensembling Graph
Convolutional Networks

Starting Point: Cons of Precomputing-based GNNs

e In general, precomputing-based methods at least occupy a CPU memory space of
O(LNd), where L is the number of layers; N is the number of nodes; and d is the
dimension of input features.

e In comparison, it is L times as large as the others, which is not affordable for
extremely large-scale graphs.

A FACT: containing about 111 million nodes, the largest ogb dataset,
ogbn-papers100M, requires approximately 57 Gigabytes (GB) to store the initial
feature matrix, given the data type is float and the dimension of features is 128. As
the number of layers increases, the required CPU memory space will grow
proportionally to an unaffordable number.

13

EnGCN: Ensembling Graph Neural Networks

RECAP: The message passing of k layers with a general form
X&) _ k=1) <A¢<k—2) (--. Aq;(O)(Ax(O))))’
regarding those feature transformation unit ® as weak models, we propose a layer-wise
training manner:
x(N — ax(-1) z() — q;(/)()((/))7 vol) — Vﬁ(z(/)’y)_
© Message passing on CPUs @ foryord propagation ® backward propagtion

for | from 1 to k

)

o &) = deepcopy(d!~1)
e do @; do ® @ til convergence.
e save model ®()

Organically integrating SLE [6], EnGCN achives new SOTA performance on several
benchmark datasets.

14

Empirical Analysis

Table 4: The comparison experiment results on Flickr, Reddit, and ogbn-products

Category

Baselines

Flickr

Reddit

ogbn-products

Sampling-based

GraphSAGE [4]
FastGCN [1]
LADIES [13]
ClusterGCN [2]
GraphSAINT [10]

53.63 £ 0.13%
50.51 £ 0.13%
50.51 + 0.13%
51.20 £ 0.13%
51.81 + 0.17%

96.50 + 0.03%
79.50 £ 1.22%
86.96 + 0.37%
95.68 + 0.03%
95.62 + 0.05%

80.61 + 0.16%
73.46 + 0.20%
75.31 £ 0.56%
78.62 £+ 0.61%
75.36 + 0.34%

Decoupling-based

SGC [8]
SIGN [3]
SAGN [6]
GAMLP [12]
C&S [5]

50.35 £ 0.05%
51.60 + 0.11%
50.07 £ 0.11%
52.58 £+ 0.12%
51.24 £ 0.17%

93.51 + 0.04%
95.95 + 0.02%
96.48 £ 0.03%
96.73 + 0.03%
95.33 £ 0.08%

67.48 £ 0.11%
76.85 £ 0.56%
81.21 + 0.07%
83,76 + 0.19%
85.11 + 0.07%

Other SOTA Methods

AdaGCN [7]

SAGN-+SLE [6]*
GIANT-XRT+

SAGN+MCR+C&S [11]*

52.97 £ 0.01%
54.60 + 0.40%

96.05 + 0.00%
97.10 + 0.00%

76.41 + 0.00%
84.28 + 0.14%

86.73 + 0.08%

Ours

EnGCN

56.43 + 0.21%

97.14 + 0.03%

87.99 + 0.04%

*: the results are from the original papers

15

Convergence Analysis

Flickr Reddit ogbn-products

esssessssssssessesees,
Flakhing * voesesseessses

» sesssesees®t ""_,,................"""““""
. g, s
w0 1 %00
"
Q Q ~ Q 875
Q Q Q
I < & <
| 10 (. Vs | 850
g g°* 4 g
< < 7 I ms
= = I = soot®
B =] J &
50 i 800 o
. .’V
oy jessvetessese ns{ 1
s0 p—t_ oo’ - d
oo el 7 i
-] w0 |
b) 0 = EY %0 b % 0) BN BN 7 B 0 % EY S
Epochs Epochs Epochs
5
s
ey A ssesssesse setsssesessans”
S onenese -~
" o e 90.0
50 ‘.\ 7
, !
a % esses”
8 8 8 850
w5
< < <,
| 48 | | 25
— - —
< < <
> > % > 800
a
g, - * Laseersses Rl
46 i "y ’. .‘v 750 ,"
v ! 4
- 0 ns
b % . = BN %0 b o 0) BN BN B % 0 EY B

Epochs Epochs Epo&ghs

Figure 3: The convergence landscape of EnGCN. All models are trained with 4 layers’
features. For each layer-wise phase, we train the model with 70 epochs.

16

CPU Memory Usage Comparison

12

— SIGN P g
— 104 SAGN P
el -
g EnGCN . P
%‘ 89 =rmeme- ClusterGCN > =
£ | —- GraphSAGE .~
= e
o) ———"
9] - - Lun®
= ’/ --.'___.0 - ---.__..:-—_.
g * y -t PR
:O = e=" T _‘_'.,-——.-r.-‘.—
< d L ._-T_‘.'\:.'.‘--’ -

24 .__—.—--'—‘ _____ os""
PPPT L
pantt
I 2 3 6 7 8

4 5
Number of Layers

Figure 4: The allocated CPU memory of EnGCN and selected baselines on Flickr.

17

Questions??

2Contact k.duan®u.nus.edu: {z1105,Kaixiong.Zhou,xia.hu}@rice.edu;
{peihaowang,w.zheng,tianlong.chen,atlaswang} @utexas.edu

17

References i

[4 J. Chen, T. Ma, and C. Xiao.
Fastgcn: fast learning with graph convolutional networks via importance
sampling.
arXiv preprint arXiv:1801.10247, 2018.

[W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C.-J. Hsieh.
Cluster-gcn: An efficient algorithm for training deep and large graph
convolutional networks.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 257-266, 2019.

[§ F. Frasca, E. Rossi, D. Eynard, B. Chamberlain, M. Bronstein, and F. Monti.
Sign: Scalable inception graph neural networks.
arXiv preprint arXiv:2004.11198, 2020.

References ii

[d W. Hamilton, Z. Ying, and J. Leskovec.
Inductive representation learning on large graphs.
In NeulPS, pages 1024-1034, 2017.

G Q. Huang, H. He, A. Singh, S.-N. Lim, and A. R. Benson.
Combining label propagation and simple models out-performs graph neural

networks.
arXiv preprint arXiv:2010.13993, 2020.

[C.Sunand G. Wu.
Scalable and adaptive graph neural networks with self-label-enhanced
training.
arXiv preprint arXiv:2104.09376, 2021.

References ii

[K. Sun, Z. Zhu, and Z. Lin.
Adagcn: Adaboosting graph convolutional networks into deep models.
arXiv preprint arXiv:1908.05081, 2019.

[F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger.
Simplifying graph convolutional networks.
In International conference on machine learning, pages 6861-6871. PMLR, 2019.

& R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec.
Graph convolutional neural networks for web-scale recommender systems.
In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 974-983, 2018.

G H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna.
Graphsaint: Graph sampling based inductive learning method.
arXiv preprint arXiv:1907.04931, 2019.

References iv

M C. Zhang, Y. He, Y. Cen, Z. Hou, and J. Tang.
Improving the training of graph neural networks with consistency

regularization.
arXiv preprint arXiv:2112.04319, 2021.

N W. Zhang, Z. Yin, Z. Sheng, W. Ouyang, X. Li, Y. Tao, Z. Yang, and B. Cui.

Graph attention multi-layer perceptron.
arXiv preprint arXiv:2108.10097, 2021.
[{ D.Zou, Z. Hu, Y. Wang, S. Jiang, Y. Sun, and Q. Gu.
Layer-dependent importance sampling for training deep and large graph
convolutional networks.
Advances in neural information processing systems, 32, 2019.

	Scale UP Graph Neural Networks
	Formulations for Large-Scale Graph Training Paradigms
	Sampling-based Scalable GNNs
	Decoupling-based Scalable GNNs

	Benchmarking Scalable GNNs
	Benchmarking over Effectiveness
	Benchmarking over Efficiency

	EnGCN: Ensembling Graph Convolutional Networks
	Appendix

