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The Bottleneck of Scaling Up GNNs

A fact: training a GNN-based recommendation system over 7.4 billion items requires
three days on a 16-GPU cluster (384 GB memory in total) [9]

Recap A k-layer message passing (MP) of Vanilla GCNs:

x(K) — A(Kl)g(sz)a(. - o (AOXOWO)) .. )W(Kz))le),

Bottleneck
For the memory usage, the entire sparse adjacency matrix is supposed to be stored in

one GPU. As the number of nodes grows, it is not affordable.



Formulations for Large-Scale Graph
Training Paradigms



Taxonomy of Scalable GNNs

Research Question
Since the entire sparse adjacency matrix can not be stored into one GPU, how could

we do the training utilizing the graph structure?
SAMPLING-BASED METHODS

Approximate batch training with sampled graphs

XL = Z\gl—lh,(/}gz—%a(. o (RADXOWO)... )W(K—z)>W(K—1),

Category:
o Node-wise Sampling: Bjy1 =, ep{u | u~ Q- Pry}
e Layer-wise Sampling: Bjy1 = {u | u~ Q- Pyp)}
e Subgraph-wise Sampling: Bx = Bx_1=---=Bo={u| u~ Q- -Pg}



Taxonomy of Scalable GNNs

DECOUPLING-BASED METHODS
Move all message passing (AX operation) to CPU

e Precomputing-based:

Xl:AIX, )_(:P(X7X17 7XK)7 Y:fg(X),

precomputing

end-to-end training on a GPU

e Postprocessing-based: Label Propagation

Y = aAYUY 4 (1 - a)G.



Benchmarking Scalable GNNs




Benchmarking over Effectiveness: Greedy Hyperparameter Search

Table 1: The search space of hyperparameters for benchmarked methods.

Category Hyperparameter (Abbr.) ‘ Candidates
Learning rate (LR) {le —2*,1e — 3,1e — 4}
Weight Decay (WD) {le — 4*,2e — 4,4e — 4}
D t Rate (DP 0.1,0.2%,0.5,0.7
Sampling & ropout Rate (DP) {04, ,0.5,0.7}

Training Epochs (#E)
Hidden Dimension (HD)
# layers (#L)

Batch size? (BS)

Precomputing

{20,30,40,50*}
128*,256, 512
{2*,4,6}
{1000*, 2000, 5000}

Diffusion Type (DT)

# Propagations (#Prop)
Aggregation Ratio (AR)
Adj. Norm (Adj.)

Auto Scale (AS)

# MLP Layers (#ML)

LP

{ residual*, zeros }
{2, 20", 50}
{ 0.5, 0.75% 0.9, 0.99 }
{ DA, AD"}, D-1/2ADV/2* }
{ True*, False }
{253, 4}

*

marks the default value

2 we do not search batch size for precomputing based methods since

they do not follow a sample-training style.



Benchmarking over Effectiveness: Experiment Results
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Figure 1: The greedy hyperparameter searching results for selected representative methods.
The x-axis denotes the searched HPs, where the abbreviations are consistent with Table 1.



Benchmarking over Effectiveness: Empirical Observations

e Sampling-based methods are more sensitive to the hyperparameters
related to MP such as batch_size, num_of_layers.

e Sampling-based methods’ performance is nearly positive-correlated with
the training batch size. Particularly, in our experiment, we set the number of
sampled neighbors of node-wise sampling to a large threshold such that the
performance of GraphSAGE can be regarded as full-batch training's.

e Precomputing-based methods generally perform better on larger datasets.
Remarkably, our searched results for GraphSAGE and LP on ogbn-products also
reached better performance, compared with the ones on the OGB leaderboard ®.

"https://ogb.stanford.edu/docs/leader_nodeprop/


https://ogb.stanford.edu/docs/leader_nodeprop/

Benchmarking over Effeciency: Complexity Analysis

Table 2: The time and space complexity for training GNNs with sampling-based and
decoupling-based methods, where b is the averaged number of nodes in the sampled subgraph
and r is the averaged number of neighbors of each node. Here we do not consider the
complexity of pre-processing sice it can be done in CPUs.

Category ‘ Time Complexity Space Complexity
Node-wise Sampling [4] O(rtND?) O(brtD)
Layer-wise Sampling [3, 13] O(rLND?) O(brLD)
Subgraph-wise Sampling [2, 10] | O(L||A||oD + LND?) O(bLD)
Precomputing [8, 3, 6] O(LND?) O(bLD)
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Benchmarking over Effeciency: Experiment Results

Table 3: The memory usage of activations and the hardware throughput (higher is better).
The hardware here is an RTX 3090 GPU.

Flickr Reddit ogbn-products

Act Throughput Act Throughput Act Throughput

Mem. (MB) (iteration/s) Mem. (MB) (iteration/s) Mem. (MB) (iteration/s)
GraphSAGE 230.63 65.96 687.21 27.62 415.94 37.69
ClusterGCN 18.45 171.46 20.84 79.91 10.62 156.01
GraphSAINT 16.51 151.77 21.25 70.68 10.95 143.51
FastGCN 19.77 226.93 22.53 87.94 11.54 93.05
LADIES 33.26 195.34 43.21 116.46 20.33 93.47
SGC 0.01 115.02 0.02 89.91 0.01 267.31
SIGN 16.99 96.20 16.38 75.33 16.21 208.52
SAGN 72.94 55.28 72.37 43.45 71.81 80.04
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Benchmarking over Efficiency: Convergence Analysis
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Figure 2: The empirical results of convergence for sampling-based methods (real line) and
precomputing-based methods (dash line).



EnGCN: Ensembling Graph
Convolutional Networks




Starting Point: Cons of Precomputing-based GNNs

e In general, precomputing-based methods at least occupy a CPU memory space of
O(LNd), where L is the number of layers; N is the number of nodes; and d is the
dimension of input features.

e In comparison, it is L times as large as the others, which is not affordable for
extremely large-scale graphs.

A FACT: containing about 111 million nodes, the largest ogb dataset,
ogbn-papers100M, requires approximately 57 Gigabytes (GB) to store the initial
feature matrix, given the data type is float and the dimension of features is 128. As
the number of layers increases, the required CPU memory space will grow
proportionally to an unaffordable number.
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EnGCN: Ensembling Graph Neural Networks

RECAP: The message passing of k layers with a general form
X&) _ k=1) <A¢<k—2) (--. Aq;(O)(Ax(O))))’
regarding those feature transformation unit ® as weak models, we propose a layer-wise
training manner:
x(N — ax(-1) z() — q;(/)()((/))7 vol) — Vﬁ(z(/)’y)_
© Message passing on CPUs @ foryord propagation ® backward propagtion

for | from 1 to k

)

o &) = deepcopy(d!~1)
e do @; do ® @ til convergence.
e save model ®()

Organically integrating SLE [6], EnGCN achives new SOTA performance on several
benchmark datasets.
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Empirical Analysis

Table 4: The comparison experiment results on Flickr, Reddit, and ogbn-products

Category

Baselines

Flickr

Reddit

ogbn-products

Sampling-based

GraphSAGE [4]
FastGCN [1]
LADIES [13]
ClusterGCN [2]
GraphSAINT [10]

53.63 £ 0.13%
50.51 £ 0.13%
50.51 + 0.13%
51.20 £ 0.13%
51.81 + 0.17%

96.50 + 0.03%
79.50 £ 1.22%
86.96 + 0.37%
95.68 + 0.03%
95.62 + 0.05%

80.61 + 0.16%
73.46 + 0.20%
75.31 £ 0.56%
78.62 £+ 0.61%
75.36 + 0.34%

Decoupling-based

SGC [8]
SIGN [3]
SAGN [6]
GAMLP [12]
C&S [5]

50.35 £ 0.05%
51.60 + 0.11%
50.07 £ 0.11%
52.58 £+ 0.12%
51.24 £ 0.17%

93.51 + 0.04%
95.95 + 0.02%
96.48 £ 0.03%
96.73 + 0.03%
95.33 £ 0.08%

67.48 £ 0.11%
76.85 £ 0.56%
81.21 + 0.07%
83,76 + 0.19%
85.11 + 0.07%

Other SOTA Methods

AdaGCN [7]

SAGN-+SLE [6]*
GIANT-XRT+

SAGN+MCR+C&S [11]*

52.97 £ 0.01%
54.60 + 0.40%

96.05 + 0.00%
97.10 + 0.00%

76.41 + 0.00%
84.28 + 0.14%

86.73 + 0.08%

Ours

EnGCN

56.43 + 0.21%

97.14 + 0.03%

87.99 + 0.04%

*: the results are from the original papers
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Convergence Analysis

Flickr Reddit ogbn-products
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Figure 3: The convergence landscape of EnGCN. All models are trained with 4 layers’
features. For each layer-wise phase, we train the model with 70 epochs.
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CPU Memory Usage Comparison
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Figure 4: The allocated CPU memory of EnGCN and selected baselines on Flickr.
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Questions??

2Contact k.duan®u.nus.edu: {z1105,Kaixiong.Zhou,xia.hu}@rice.edu;
{peihaowang,w.zheng,tianlong.chen,atlaswang} @utexas.edu
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